First commit
This commit is contained in:
commit
43a72c3fb7
12 changed files with 213 additions and 0 deletions
BIN
lib/__pycache__/arithmetics.cpython-313.pyc
Normal file
BIN
lib/__pycache__/arithmetics.cpython-313.pyc
Normal file
Binary file not shown.
BIN
lib/__pycache__/diffie_hellman.cpython-313.pyc
Normal file
BIN
lib/__pycache__/diffie_hellman.cpython-313.pyc
Normal file
Binary file not shown.
BIN
lib/__pycache__/miller_rabin.cpython-313.pyc
Normal file
BIN
lib/__pycache__/miller_rabin.cpython-313.pyc
Normal file
Binary file not shown.
BIN
lib/__pycache__/rsa.cpython-313.pyc
Normal file
BIN
lib/__pycache__/rsa.cpython-313.pyc
Normal file
Binary file not shown.
39
lib/arithmetics.py
Normal file
39
lib/arithmetics.py
Normal file
|
@ -0,0 +1,39 @@
|
|||
# Arithmetics functions implementaton
|
||||
|
||||
def modpow(a: int, b: int, m: int) -> int:
|
||||
result = 1
|
||||
while b > 0:
|
||||
if (b & 1) > 0:
|
||||
result = (result * a) % m
|
||||
b = b >> 1
|
||||
a = (a * a) % m
|
||||
return result
|
||||
|
||||
def gcd(a: int, b: int) -> int:
|
||||
if b == 0:
|
||||
return a
|
||||
return gcd(b, a % b)
|
||||
|
||||
def mod_inverse(A: int, M: int) -> int:
|
||||
m0 = M
|
||||
y = 0
|
||||
x = 1
|
||||
if (M == 1):
|
||||
return 0
|
||||
while (A > 1):
|
||||
# q is quotient
|
||||
q = A // M
|
||||
t = M
|
||||
# m is remainder now, process
|
||||
# same as Euclid's algo
|
||||
M = A % M
|
||||
A = t
|
||||
t = y
|
||||
# Update x and y
|
||||
y = x - q * y
|
||||
x = t
|
||||
# Make x positive
|
||||
if (x < 0):
|
||||
x = x + m0
|
||||
return x
|
||||
|
21
lib/diffie_hellman.py
Normal file
21
lib/diffie_hellman.py
Normal file
|
@ -0,0 +1,21 @@
|
|||
# Python Diffie-Hillman implémentation
|
||||
|
||||
import random
|
||||
|
||||
import lib.miller_rabin as miller
|
||||
import lib.arithmetics as arithm
|
||||
|
||||
def get_p_and_g(n: int) -> (int, int):
|
||||
p = miller.get_random_prime(n)
|
||||
g = random.randint(2**(n-1), p)
|
||||
return (p, g)
|
||||
|
||||
def get_x(n: int) -> int:
|
||||
return random.randint(2**(n-1), 2**n - 1)
|
||||
|
||||
def get_X(x: int, p: int, g: int) -> int:
|
||||
return arithm.modpow(g, x, p)
|
||||
|
||||
def get_K(X: int, y: int, p: int):
|
||||
return arithm.modpow(X, y, p)
|
||||
|
40
lib/miller_rabin.py
Normal file
40
lib/miller_rabin.py
Normal file
|
@ -0,0 +1,40 @@
|
|||
# Python Miller-Rabin implementation
|
||||
|
||||
import random
|
||||
import lib.arithmetics as arithm
|
||||
|
||||
def get_d_and_s(n: int) -> (int, int):
|
||||
d = n - 1
|
||||
s = 0
|
||||
while d % 2 == 0:
|
||||
d //= 2
|
||||
s += 1
|
||||
return (d, s)
|
||||
|
||||
def rabin_witness(n: int, a: int) -> bool:
|
||||
d, s = get_d_and_s(n)
|
||||
x = arithm.modpow(a, d, n)
|
||||
if x == 1 or x == n - 1:
|
||||
return False
|
||||
for _ in range(s - 1):
|
||||
x = arithm.modpow(x, 2, n)
|
||||
if x == n - 1:
|
||||
return False
|
||||
return True
|
||||
|
||||
def miller_rabin(n: int, k: int) -> bool:
|
||||
if n < 3: return False
|
||||
for _ in range(k):
|
||||
a = random.randint(2, n - 1)
|
||||
if rabin_witness(n, a): return False
|
||||
return True
|
||||
|
||||
def is_prime(n: int) -> bool:
|
||||
return miller_rabin(n, 25)
|
||||
|
||||
def get_random_prime(n: int) -> int:
|
||||
a = random.randint(2**(n-1), 2**(n) - 1)
|
||||
while not is_prime(a):
|
||||
a = random.randint(2**(n-1), 2**(n) - 1)
|
||||
return a
|
||||
|
35
lib/rsa.py
Normal file
35
lib/rsa.py
Normal file
|
@ -0,0 +1,35 @@
|
|||
# Python RSA implementation
|
||||
|
||||
import random
|
||||
import sys
|
||||
|
||||
import lib.arithmetics as arithm
|
||||
import lib.miller_rabin as miller
|
||||
|
||||
def get_p_and_q(n: int) -> (int, int):
|
||||
# Get two random prime numbers
|
||||
p = miller.get_random_prime(n)
|
||||
q = miller.get_random_prime(n)
|
||||
# Ensure the two numbers are differents
|
||||
while p == q:
|
||||
q = get_random_prime(n)
|
||||
return (p, q)
|
||||
|
||||
def get_keys(l: int) -> int:
|
||||
p, q = get_p_and_q(l // 2)
|
||||
n = p * q
|
||||
phy_n = (p - 1) * (q - 1)
|
||||
e = 65537
|
||||
while arithm.gcd(e, phy_n) != 1:
|
||||
p, q = get_p_and_q(l // 2)
|
||||
n = p * q
|
||||
phy_n = (p - 1) * (q - 1)
|
||||
d = arithm.mod_inverse(e, phy_n)
|
||||
return (e, d, n)
|
||||
|
||||
def encrypt(m: int, e: int, n: int) -> int:
|
||||
return arithm.modpow(m, e, n)
|
||||
|
||||
def decrypt(c: int, d: int, n: int) -> int:
|
||||
return arithm.modpow(c, d, n)
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue