First commit

This commit is contained in:
Lukian 2025-01-23 17:57:15 +01:00
commit 43a72c3fb7
12 changed files with 213 additions and 0 deletions

2
.gitignore vendored Normal file
View file

@ -0,0 +1,2 @@
cr/
.venv/

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

39
lib/arithmetics.py Normal file
View file

@ -0,0 +1,39 @@
# Arithmetics functions implementaton
def modpow(a: int, b: int, m: int) -> int:
result = 1
while b > 0:
if (b & 1) > 0:
result = (result * a) % m
b = b >> 1
a = (a * a) % m
return result
def gcd(a: int, b: int) -> int:
if b == 0:
return a
return gcd(b, a % b)
def mod_inverse(A: int, M: int) -> int:
m0 = M
y = 0
x = 1
if (M == 1):
return 0
while (A > 1):
# q is quotient
q = A // M
t = M
# m is remainder now, process
# same as Euclid's algo
M = A % M
A = t
t = y
# Update x and y
y = x - q * y
x = t
# Make x positive
if (x < 0):
x = x + m0
return x

21
lib/diffie_hellman.py Normal file
View file

@ -0,0 +1,21 @@
# Python Diffie-Hillman implémentation
import random
import lib.miller_rabin as miller
import lib.arithmetics as arithm
def get_p_and_g(n: int) -> (int, int):
p = miller.get_random_prime(n)
g = random.randint(2**(n-1), p)
return (p, g)
def get_x(n: int) -> int:
return random.randint(2**(n-1), 2**n - 1)
def get_X(x: int, p: int, g: int) -> int:
return arithm.modpow(g, x, p)
def get_K(X: int, y: int, p: int):
return arithm.modpow(X, y, p)

40
lib/miller_rabin.py Normal file
View file

@ -0,0 +1,40 @@
# Python Miller-Rabin implementation
import random
import lib.arithmetics as arithm
def get_d_and_s(n: int) -> (int, int):
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
return (d, s)
def rabin_witness(n: int, a: int) -> bool:
d, s = get_d_and_s(n)
x = arithm.modpow(a, d, n)
if x == 1 or x == n - 1:
return False
for _ in range(s - 1):
x = arithm.modpow(x, 2, n)
if x == n - 1:
return False
return True
def miller_rabin(n: int, k: int) -> bool:
if n < 3: return False
for _ in range(k):
a = random.randint(2, n - 1)
if rabin_witness(n, a): return False
return True
def is_prime(n: int) -> bool:
return miller_rabin(n, 25)
def get_random_prime(n: int) -> int:
a = random.randint(2**(n-1), 2**(n) - 1)
while not is_prime(a):
a = random.randint(2**(n-1), 2**(n) - 1)
return a

35
lib/rsa.py Normal file
View file

@ -0,0 +1,35 @@
# Python RSA implementation
import random
import sys
import lib.arithmetics as arithm
import lib.miller_rabin as miller
def get_p_and_q(n: int) -> (int, int):
# Get two random prime numbers
p = miller.get_random_prime(n)
q = miller.get_random_prime(n)
# Ensure the two numbers are differents
while p == q:
q = get_random_prime(n)
return (p, q)
def get_keys(l: int) -> int:
p, q = get_p_and_q(l // 2)
n = p * q
phy_n = (p - 1) * (q - 1)
e = 65537
while arithm.gcd(e, phy_n) != 1:
p, q = get_p_and_q(l // 2)
n = p * q
phy_n = (p - 1) * (q - 1)
d = arithm.mod_inverse(e, phy_n)
return (e, d, n)
def encrypt(m: int, e: int, n: int) -> int:
return arithm.modpow(m, e, n)
def decrypt(c: int, d: int, n: int) -> int:
return arithm.modpow(c, d, n)

59
main.py Normal file
View file

@ -0,0 +1,59 @@
import lib.rsa as rsa
import lib.diffie_hellman as diffie
from hashlib import sha256
BITS = 32
ALPH = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, 'f': 5, 'g': 6, 'h': 7, 'i': 8, 'j': 9, 'k': 10, 'l': 11, 'm': 12, 'n': 13, 'o': 14, 'p': 15, 'q': 16, 'r': 17, 's': 18, 't': 19, 'u': 20, 'v': 21, 'w': 22, 'x': 23, 'y': 24, 'z': 25, ' ': 26}
LEN = BITS // 5
def encode(text):
sum = 0
for i in range(len(text)):
sum += ALPH[text[i]] * 27 ** i
return sum
def decode(num):
text = ""
while num > 0:
text += list(ALPH.keys())[num % 27]
num //= 27
return text
def encrypt(text, e, n):
crypt = []
while len(text) > 0:
if len(text) >= LEN:
crypt.append(rsa.encrypt(encode(text[:LEN]), e, n))
text = text[LEN:]
else:
crypt.append(rsa.encrypt(encode(text), e, n))
text = ""
return crypt
def decrypt(crypt, d, n):
text = ""
for i in range(len(crypt)):
text += decode(rsa.decrypt(crypt[i], d, n))
return text
if __name__ == "__main__":
p, g = diffie.get_p_and_g(BITS)
a = diffie.get_x(BITS)
b = diffie.get_x(BITS)
A = diffie.get_X(a, p, g)
B = diffie.get_X(b, p, g)
K_a = diffie.get_K(B, a, p)
K_b = diffie.get_K(A, b, p)
e, d, n = rsa.get_keys(BITS)
c_d = d ^ K_a
h_d = sha256(str(c_d).encode())
m = "hello world"
crypt = encrypt(m, e, n)
print(crypt)
print(decrypt(crypt, d, n))

1
requirements.txt Normal file
View file

@ -0,0 +1 @@

16
tests.py Normal file
View file

@ -0,0 +1,16 @@
import lib.rsa as rsa
import lib.arithmetics as arithm
import lib.miller_rabin as miller
for i in range(100):
for j in range(100):
assert arithm.modpow(i, j, 20) == pow(i, j, 20)
for i in range(3, 100):
if miller.is_prime(i): print(i)
e, d, n = rsa.get_keys(2048)
c = rsa.encrypt(22, e, n)
m = rsa.decrypt(c, d, n)
print(m)