Saataa andagii !

This commit is contained in:
Lukian 2025-01-23 19:06:47 +01:00
parent 43a72c3fb7
commit 75d0a97501
6 changed files with 10 additions and 8 deletions

Binary file not shown.

View file

@ -10,8 +10,10 @@ def modpow(a: int, b: int, m: int) -> int:
return result
def gcd(a: int, b: int) -> int:
# if b = 0 return a
if b == 0:
return a
# return gcd(b, a % b) because gcd(a, b) = gcd(b, rem(a, b))
return gcd(b, a % b)
def mod_inverse(A: int, M: int) -> int:
@ -21,18 +23,13 @@ def mod_inverse(A: int, M: int) -> int:
if (M == 1):
return 0
while (A > 1):
# q is quotient
q = A // M
t = M
# m is remainder now, process
# same as Euclid's algo
M = A % M
A = t
t = y
# Update x and y
y = x - q * y
x = t
# Make x positive
if (x < 0):
x = x + m0
return x

View file

@ -1,8 +1,5 @@
# Python RSA implementation
import random
import sys
import lib.arithmetics as arithm
import lib.miller_rabin as miller
@ -16,15 +13,21 @@ def get_p_and_q(n: int) -> (int, int):
return (p, q)
def get_keys(l: int) -> int:
# Get p and q
p, q = get_p_and_q(l // 2)
# Compute n and phy(n)
n = p * q
phy_n = (p - 1) * (q - 1)
# Chose e = 65537
e = 65537
# Ensure e fits with the others numbers
while arithm.gcd(e, phy_n) != 1:
p, q = get_p_and_q(l // 2)
n = p * q
phy_n = (p - 1) * (q - 1)
# Compute d
d = arithm.mod_inverse(e, phy_n)
# Return e, d and n
return (e, d, n)
def encrypt(m: int, e: int, n: int) -> int: