38 lines
966 B
Python
38 lines
966 B
Python
# Python RSA implementation
|
|
|
|
import lib.arithmetics as arithm
|
|
import lib.miller_rabin as miller
|
|
|
|
def get_p_and_q(n: int) -> (int, int):
|
|
# Get two random prime numbers
|
|
p = miller.get_random_prime(n)
|
|
q = miller.get_random_prime(n)
|
|
# Ensure the two numbers are differents
|
|
while p == q:
|
|
q = get_random_prime(n)
|
|
return (p, q)
|
|
|
|
def get_keys(l: int) -> int:
|
|
# Get p and q
|
|
p, q = get_p_and_q(l // 2)
|
|
# Compute n and phy(n)
|
|
n = p * q
|
|
phy_n = (p - 1) * (q - 1)
|
|
# Chose e = 65537
|
|
e = 65537
|
|
# Ensure e fits with the others numbers
|
|
while arithm.gcd(e, phy_n) != 1:
|
|
p, q = get_p_and_q(l // 2)
|
|
n = p * q
|
|
phy_n = (p - 1) * (q - 1)
|
|
# Compute d
|
|
d = arithm.mod_inverse(e, phy_n)
|
|
# Return e, d and n
|
|
return (e, d, n)
|
|
|
|
def encrypt(m: int, e: int, n: int) -> int:
|
|
return arithm.modpow(m, e, n)
|
|
|
|
def decrypt(c: int, d: int, n: int) -> int:
|
|
return arithm.modpow(c, d, n)
|
|
|