Saataa andagii !

This commit is contained in:
Lukian 2024-12-17 10:55:50 +01:00
parent d39467f070
commit 10bfdd3fde
4 changed files with 87 additions and 37 deletions

View file

@ -21,8 +21,7 @@ def max_i(array: list[int]) -> int:
max_i = i
return max_i
def new_population(pm, ng, n, ts, tm, alpha, fm): # -> set(list(set(str)), str, int, int, int, float, float, float, int)
def new_population(pm, ng, n, ts, tm, alpha, fm):
"""
fonction qui renvoie une nouvelle population
"""
@ -43,7 +42,7 @@ def new_population(pm, ng, n, ts, tm, alpha, fm): # -> set(list(set(str)), str,
return population
def new_individual(): # -> set(str)
def new_individual():
"""
fonction qui renvoie un nouvel individu
"""
@ -66,6 +65,7 @@ def fitness1(individual, pm) -> int:
"""
sum = 0
for i in range(len(individual["chromozome"])):
if i < len(pm) and i < len(individual["chromozome"]):
sum += abs(ord(individual["chromozome"][i]) - ord(pm[i]))
return -sum
@ -76,7 +76,7 @@ def fitness2(individual, pm, alpha) -> int:
match = 0
missed_placed = 0
for i in range(len(individual["chromozome"])):
if i > len(pm):
if i >= len(pm):
missed_placed += len(individual["chromozome"]) - len(pm)
break
elif individual["chromozome"][i] == pm[i]:
@ -104,13 +104,17 @@ def get_fitness(population, individual) -> int:
case _:
return fitness1(individual, population["pm"])
def get_fitness_list(population):
fitness_list = []
for individual in population["individuals"]:
fitness_list.append(get_fitness(population, individual))
return fitness_list
def get_best(population):
"""
Methode qui renvoie le meilleur individu de la population
"""
fitness_list = []
for individual in population["individuals"]:
fitness_list.append(get_fitness(population, individual))
fitness_list = get_fitness_list(population)
return population["individuals"][max_i(fitness_list)]
def print_best(population) -> None:
@ -119,49 +123,57 @@ def print_best(population) -> None:
"""
print(get_best(population)["chromozome"])
def mutate(individual) -> None:
"""
Methode qui change un des caractères du chromozome
"""
new = list(individual["chromozome"])
if random.randint(1, 2) == 1: new.insert(random.randint(0, len(new) - 1), chr(random.randint(0, 255)))
else : new[random.randint(0, len(new) - 1)] = chr(random.randint(0, 255))
individual["chromozome"] = "".join(new)
def select(population) -> None:
"""
Methode qui sélectionne les meilleurs individus
"""
fitness_list = []
for individual in population["individuals"]:
fitness_list.append(get_fitness(population, individual))
fitness_list = get_fitness_list(population)
for i in range(int((1 - population["ts"]) * population["n"])):
least = min_i(fitness_list)
fitness_list.pop(least)
population["individuals"].pop(least)
def get_two_random_individuals(population):
i = random.randint(0, len(population["individuals"]) - 1)
j = random.randint(0, len(population["individuals"]) - 1)
while i == j:
j = random.randint(0, len(population["individuals"]) - 1)
return (population["individuals"][i], population['individuals'][j])
def reproduct(population) -> None:
"""
Methode qui reproduit les individus entre eux jusqu'à obtenir une population de taille N
"""
new = []
while len(population["individuals"]) + len(new) != population["n"]:
i = random.randint(0, len(population["individuals"]) - 1)
j = random.randint(0, len(population["individuals"]) - 1)
while i == j:
j = random.randint(0, len(population["individuals"]) - 1)
indivi_1 = population["individuals"][i]
indivi_2 = population['individuals'][j]
indivi_1, indivi_2 = get_two_random_individuals(population)
avg = (len(indivi_1) + len(indivi_2)) // 2
cut = random.randint(avg // 3, 2 * avg // 3)
while cut > len(indivi_1) or cut > len(indivi_2): cut = random.randint(avg // 3, 2 * avg // 3)
new_chromozome = indivi_1["chromozome"][:cut] + indivi_2["chromozome"][-cut:]
while cut > len(indivi_1) or cut > len(indivi_2):
cut = random.randint(avg // 3, 2 * avg // 3)
new_chromozome = indivi_1["chromozome"][:cut] + indivi_2["chromozome"][cut:]
child = new_individual()
child["chromozome"] = new_chromozome
new.append(child)
population["individuals"] += new
def mutate(individual) -> None:
"""
Methode qui change un des caractères du chromozome
"""
new = list(individual["chromozome"])
dice = random.randint(1,3)
if dice == 1 and len(new) < 30:
new.insert(random.randint(0, len(new) - 1), chr(random.randint(0, 255)))
elif dice == 2 and len(new) > 4:
new.pop(random.randint(0, len(new) - 1))
else :
new[random.randint(0, len(new) - 1)] = chr(random.randint(0, 255))
individual["chromozome"] = "".join(new)
def mutate_pop(population) -> None:
"""
Methode qui mute une partie de la population selon le taut de mutation

View file

@ -8,7 +8,7 @@ import lib.ultra_mastermind_pp_imp as libppimp
# constants
PM = ""
NG = 500
N = 200
N = 300
TS = 0.5
TM = 0.25
ALPHA = 0.5

View file

@ -1,2 +1,13 @@
contourpy==1.3.1
cycler==0.12.1
fonttools==4.55.0
kiwisolver==1.4.7
Levenshtein==0.26.1
matplotlib==3.9.2
numpy==2.1.3
packaging==24.2
pillow==11.0.0
pyparsing==3.2.0
python-dateutil==2.9.0.post0
RapidFuzz==3.10.1
six==1.16.0

View file

@ -5,6 +5,7 @@ import matplotlib.pyplot as plt
# project libs importations
import lib.ultra_mastermind_obj as libobj
import lib.ultra_mastermind_imp as libimp
import lib.ultra_mastermind_pp_imp as libppimp
# Variation du nombre de générations
PM = "Hello, world!"
@ -13,20 +14,46 @@ N = 400
TS = 0.5
TM = 0.25
ALPHA = 0.5
FITNESS_METHOD = 1
FITNESS_METHOD = 3
fitness_ng = []
all_ng = []
for i in range(1, 21):
NG = i * 100
for i in range(1, 11):
NG = i * 200
all_ng.append(NG)
pop = libimp.new_population(PM, NG, N, TS, TM, ALPHA, FITNESS_METHOD)
libimp.run(pop)
fitness_ng.append(libimp.get_fitness(pop, libimp.get_best(pop)))
pop = libppimp.new_population(PM, NG, N, TS, TM, ALPHA, FITNESS_METHOD)
libppimp.run(pop)
fitness_ng.append(libppimp.get_fitness(pop, libppimp.get_best(pop)))
plt.plot(all_ng, fitness_ng)
plt.title("Fitness du meilleur individu en fonciton du nombre de générations")
plt.title("Fitness du meilleur individu en fonction du nombre de générations")
plt.xlabel("Nombre de générations")
plt.ylabel("Fitness du meilleur individu")
plt.show()
# Variation du nombre de générations
PM = "Hello, world!"
NG = 500
# N = 400
TS = 0.5
TM = 0.25
ALPHA = 0.5
FITNESS_METHOD = 3
fitness_n = []
all_n = []
for i in range(1, 11):
N = i * 100
all_n.append(N)
pop = libppimp.new_population(PM, NG, N, TS, TM, ALPHA, FITNESS_METHOD)
libppimp.run(pop)
fitness_n.append(libppimp.get_fitness(pop, libppimp.get_best(pop)))
plt.plot(all_n, fitness_n)
plt.title("Fitness du meilleur individu en fonction de la taille de population")
plt.xlabel("Taille de population")
plt.ylabel("Fitness du meilleur individu")
plt.show()