ultra-mastermind-implementa.../lib/ultra_mastermind_pp_imp.py
2024-12-17 10:55:50 +01:00

197 lines
5.3 KiB
Python

# Librairie du projet en version impératif
import random
import Levenshtein
def min_i(array: list[int]) -> int:
min_val = array[0]
min_i = 0
for i in range(len(array)):
if array[i] < min_val:
min_val = array[i]
min_i = i
return min_i
def max_i(array: list[int]) -> int:
max_val = array[0]
max_i = 0
for i in range(len(array)):
if array[i] > max_val:
max_val = array[i]
max_i = i
return max_i
def new_population(pm, ng, n, ts, tm, alpha, fm):
"""
fonction qui renvoie une nouvelle population
"""
population = {
"individuals": [new_individual() for i in range(n)],
"pm": pm,
"ng": ng,
"l": len(pm),
"n": n,
"ts": ts,
"tm": tm,
"alpha": alpha,
"fm": fm
}
for individual in population["individuals"]:
randomize(individual, 4, 30)
return population
def new_individual():
"""
fonction qui renvoie un nouvel individu
"""
return {
"chromozome": ""
}
def randomize(individual, min_l, max_l) -> str:
"""
Methode qui change la valeur d'un chromozome pour une valeur aléatoire
"""
new = ""
for i in range(random.randint(min_l, max_l)):
new += chr(random.randint(0, 255))
individual["chromozome"] = new
def fitness1(individual, pm) -> int:
"""
Première methode de fitness, fait la somme des différences entre les codages des caractères des deux chaînes.
"""
sum = 0
for i in range(len(individual["chromozome"])):
if i < len(pm) and i < len(individual["chromozome"]):
sum += abs(ord(individual["chromozome"][i]) - ord(pm[i]))
return -sum
def fitness2(individual, pm, alpha) -> int:
"""
Deuxième methode de fitness qui compte les caractères bien placés et mal placés et qui renvoie un int pondéré par alpha
"""
match = 0
missed_placed = 0
for i in range(len(individual["chromozome"])):
if i >= len(pm):
missed_placed += len(individual["chromozome"]) - len(pm)
break
elif individual["chromozome"][i] == pm[i]:
match += 1
else:
missed_placed += 1
if len(pm) > len(individual["chromozome"]):
missed_placed += len(pm) - len(individual["chromozome"])
return match + alpha * missed_placed
def fitness3(individual, pm) -> int:
"""
Troisième methode de fitness qui utilise la distance de Levenshtein
"""
return -Levenshtein.distance(individual["chromozome"], pm)
def get_fitness(population, individual) -> int:
match population["fm"]:
case 1:
return fitness1(individual, population["pm"])
case 2:
return fitness2(individual, population["pm"], population["alpha"])
case 3:
return fitness3(individual, population["pm"])
case _:
return fitness1(individual, population["pm"])
def get_fitness_list(population):
fitness_list = []
for individual in population["individuals"]:
fitness_list.append(get_fitness(population, individual))
return fitness_list
def get_best(population):
"""
Methode qui renvoie le meilleur individu de la population
"""
fitness_list = get_fitness_list(population)
return population["individuals"][max_i(fitness_list)]
def print_best(population) -> None:
"""
Methode qui affiche le meilleur individu de la population
"""
print(get_best(population)["chromozome"])
def select(population) -> None:
"""
Methode qui sélectionne les meilleurs individus
"""
fitness_list = get_fitness_list(population)
for i in range(int((1 - population["ts"]) * population["n"])):
least = min_i(fitness_list)
fitness_list.pop(least)
population["individuals"].pop(least)
def get_two_random_individuals(population):
i = random.randint(0, len(population["individuals"]) - 1)
j = random.randint(0, len(population["individuals"]) - 1)
while i == j:
j = random.randint(0, len(population["individuals"]) - 1)
return (population["individuals"][i], population['individuals'][j])
def reproduct(population) -> None:
"""
Methode qui reproduit les individus entre eux jusqu'à obtenir une population de taille N
"""
new = []
while len(population["individuals"]) + len(new) != population["n"]:
indivi_1, indivi_2 = get_two_random_individuals(population)
avg = (len(indivi_1) + len(indivi_2)) // 2
cut = random.randint(avg // 3, 2 * avg // 3)
while cut > len(indivi_1) or cut > len(indivi_2):
cut = random.randint(avg // 3, 2 * avg // 3)
new_chromozome = indivi_1["chromozome"][:cut] + indivi_2["chromozome"][cut:]
child = new_individual()
child["chromozome"] = new_chromozome
new.append(child)
population["individuals"] += new
def mutate(individual) -> None:
"""
Methode qui change un des caractères du chromozome
"""
new = list(individual["chromozome"])
dice = random.randint(1,3)
if dice == 1 and len(new) < 30:
new.insert(random.randint(0, len(new) - 1), chr(random.randint(0, 255)))
elif dice == 2 and len(new) > 4:
new.pop(random.randint(0, len(new) - 1))
else :
new[random.randint(0, len(new) - 1)] = chr(random.randint(0, 255))
individual["chromozome"] = "".join(new)
def mutate_pop(population) -> None:
"""
Methode qui mute une partie de la population selon le taut de mutation
"""
mutated = []
for i in range(int(population["tm"] * population["n"])):
to_mutate = random.randint(0, population["n"] - 1)
while to_mutate in mutated:
to_mutate = random.randint(0, population["n"] - 1)
mutate(population["individuals"][to_mutate])
mutated.append(to_mutate)
def run(population) -> None:
"""
Boucle principale
"""
for i in range(population["ng"]):
select(population)
reproduct(population)
mutate_pop(population)
print_best(population)