103 lines
2.6 KiB
Python
103 lines
2.6 KiB
Python
# fichier de tests du projet
|
|
|
|
import matplotlib.pyplot as plt
|
|
import random
|
|
|
|
# project libs importations
|
|
import lib.ultra_mastermind_obj as libobj
|
|
import lib.ultra_mastermind_imp as libimp
|
|
import lib.ultra_mastermind_pp_imp as libppimp
|
|
|
|
PM = "Hello, world!"
|
|
NG = 4000
|
|
N = 400
|
|
TS = 0.7
|
|
TM = 0.25
|
|
ALPHA = 0.5
|
|
FITNESS_METHOD = 3
|
|
|
|
# Variation de la taille de la phrase
|
|
length_ng = []
|
|
length = []
|
|
|
|
for i in range(5, 26, 3):
|
|
print(f"Step {i}:")
|
|
length.append(i)
|
|
vals = []
|
|
for j in range(5):
|
|
print(f" Part {j}")
|
|
PM = "".join([chr(random.randint(0, 255)) for _ in range(i)])
|
|
pop = libppimp.new_population(PM, NG, N, TS, TM, ALPHA, FITNESS_METHOD)
|
|
ng = libppimp.run(pop)
|
|
vals.append(ng)
|
|
length_ng.append(sum(vals) / len(vals))
|
|
|
|
plt.plot(length, length_ng)
|
|
plt.title("Nombre de générations nécéssaires en fonction de la taille de la phrase.")
|
|
plt.xlabel("Taille de la phrase")
|
|
plt.ylabel("Nombre de générations")
|
|
plt.show()
|
|
|
|
# Variation de la taille de la population
|
|
n_ng = []
|
|
n = []
|
|
|
|
for i in range(50, 1000, 100):
|
|
print(f"Step {i}:")
|
|
n.append(i)
|
|
vals = []
|
|
for j in range(5):
|
|
print(f" Part {j}")
|
|
pop = libppimp.new_population(PM, NG, i, TS, TM, ALPHA, FITNESS_METHOD)
|
|
ng = libppimp.run(pop)
|
|
vals.append(ng)
|
|
n_ng.append(sum(vals) / len(vals))
|
|
|
|
plt.plot(n, n_ng)
|
|
plt.title("Nombre de générations nécéssaires en fonction de la taille de la population.")
|
|
plt.xlabel("Taille de la population")
|
|
plt.ylabel("Nombre de générations")
|
|
plt.show()
|
|
|
|
# Variation du taut de sélection
|
|
ts_ng = []
|
|
ts = []
|
|
|
|
for i in range(1, 9, 1):
|
|
print(f"Step {i / 10}:")
|
|
ts.append(i / 10)
|
|
vals = []
|
|
for j in range(5):
|
|
print(f" Part {j}")
|
|
pop = libppimp.new_population(PM, NG, N, i / 10, TM, ALPHA, FITNESS_METHOD)
|
|
ng = libppimp.run(pop)
|
|
vals.append(ng)
|
|
ts_ng.append(sum(vals) / len(vals))
|
|
|
|
plt.plot(ts, ts_ng)
|
|
plt.title("Nombre de générations nécéssaires en fonction du taut de sélection.")
|
|
plt.xlabel("Taut de sélection")
|
|
plt.ylabel("Nombre de générations")
|
|
plt.show()
|
|
|
|
# Variation du taut de mutation
|
|
tm_ng = []
|
|
tm = []
|
|
|
|
for i in range(10, 40, 5):
|
|
print(f"Step {i / 100}:")
|
|
tm.append(i / 100)
|
|
vals = []
|
|
for j in range(5):
|
|
print(f" Part {j}")
|
|
pop = libppimp.new_population(PM, NG, N, TS, i / 100, ALPHA, FITNESS_METHOD)
|
|
ng = libppimp.run(pop)
|
|
vals.append(ng)
|
|
tm_ng.append(sum(vals) / len(vals))
|
|
|
|
plt.plot(tm, tm_ng)
|
|
plt.title("Nombre de générations nécéssaires en fonction du taut de mutation.")
|
|
plt.xlabel("Taut de mutation")
|
|
plt.ylabel("Nombre de générations")
|
|
plt.show()
|
|
|