ultra-mastermind-implementa.../lib/ultra_mastermind_obj.py
2025-01-07 23:05:40 +01:00

173 lines
5.7 KiB
Python

# Librairie du projet en version orientée objet
import random
import Levenshtein
def min_i(array: list[int]) -> int:
min_val = array[0]
min_i = 0
for i in range(len(array)):
if array[i] < min_val:
min_val = array[i]
min_i = i
return min_i
def max_i(array: list[int]) -> int:
max_val = array[0]
max_i = 0
for i in range(len(array)):
if array[i] > max_val:
max_val = array[i]
max_i = i
return max_i
class Population:
"""
Classe qui représente notre population d'individuts
"""
def __init__(self, pm, ng, n, ts, tm, alpha, fm):
self.individuals = [Individual() for _ in range(n)]
for individual in self.individuals:
individual.randomize(len(pm))
self.pm = pm
self.ng = ng
self.l = len(pm)
self.n = n
self.ts = ts
self.tm = tm
self.alpha = alpha
self.fitness_method = fm
def select(self) -> None:
"""
Methode qui sélectionne les meilleurs individus
"""
fitness_list = []
for individual in self.individuals:
match self.fitness_method:
case 1:
fitness_list.append(individual.fitness1(self.pm))
case 2:
fitness_list.append(individual.fitness2(self.pm, self.alpha))
case 3:
fitness_list.append(individual.fitness3(self.pm))
case _:
fitness_list.append(individual.fitness1(self.pm))
for i in range(int((1 - self.ts) * self.n)):
least = min_i(fitness_list)
fitness_list.pop(least)
self.individuals.pop(least)
def reproduct(self) -> None:
"""
Methode qui reproduit les individus entre eux jusqu'à obtenir une population de taille N
"""
new = []
while len(self.individuals) + len(new) != self.n:
cut = random.randint(int(self.l / 3), int(2 * self.l / 3))
indivi_1 = self.individuals[random.randint(0, len(self.individuals) - 1)]
indivi_2 = self.individuals[random.randint(0, len(self.individuals) - 1)]
while indivi_1 == indivi_2:
indivi_2 = self.individuals[random.randint(0, len(self.individuals) - 1)]
new_chromozome = indivi_1.getChromozome()[:cut] + indivi_2.getChromozome()[cut:]
child = Individual()
child.setChromozome(new_chromozome)
new.append(child)
self.individuals += new
def mutate(self) -> None:
"""
Methode qui mute une partie de la population selon le taut de mutation
"""
mutated = []
for i in range(int(self.tm * self.n)):
to_mutate = random.randint(0, self.n - 1)
while to_mutate in mutated:
to_mutate = random.randint(0, self.n - 1)
self.individuals[to_mutate].mutate()
mutated.append(to_mutate)
def print_best(self) -> None:
"""
Methode qui affiche le meilleur individu de la population
"""
fitness_list = []
for individual in self.individuals:
match self.fitness_method:
case 1:
fitness_list.append(individual.fitness1(self.pm))
case 2:
fitness_list.append(individual.fitness2(self.pm, self.alpha))
case 3:
fitness_list.append(individual.fitness3(self.pm))
case _:
fitness_list.append(individual.fitness1(self.pm))
print(self.individuals[max_i(fitness_list)].getChromozome())
def run(self) -> None:
"""
Boucle principale
"""
for i in range(self.ng):
self.select()
self.reproduct()
self.mutate()
self.print_best()
class Individual:
"""
Classe qui représente les individuts de la population (les solutions potentielles)
"""
def __init__(self):
self.chromozome = ""
def setChromozome(self, c: str) -> None:
self.chromozome = c
def getChromozome(self) -> str:
return self.chromozome
def randomize(self, l) -> None:
"""
Methode qui change la valeur d'un chromozome pour une valeur aléatoire
"""
new = ""
for i in range(l):
new += chr(random.randint(0, 255))
self.chromozome = new
def fitness1(self, pm) -> int:
"""
Première methode de fitness, fait la somme des différences entre les codages des caractères des deux chaînes.
"""
sum = 0
for i in range(len(self.chromozome)):
sum += abs(ord(self.chromozome[i]) - ord(pm[i]))
return -sum
def fitness2(self, pm, alpha) -> int:
"""
Deuxième methode de fitness qui compte les caractères bien placés et mal placés et qui renvoie un int pondéré par alpha
"""
match = 0
missed_placed = 0
for i in range(len(self.chromozome)):
if self.chromozome[i] == pm[i]:
match += 1
else:
missed_placed += 1
return match + alpha * missed_placed
def fitness3(self, pm) -> int:
"""
Troisième methode de fitness qui utilise la distance de Levenshtein
"""
return -Levenshtein.distance(self.chromozome, pm)
def mutate(self) -> None:
"""
Methode qui change un des caractères du chromozome
"""
new = list(self.chromozome)
new[random.randint(0, len(new) - 1)] = chr(random.randint(0, 255))
self.chromozome = "".join(new)