173 lines
5.7 KiB
Python
173 lines
5.7 KiB
Python
# Librairie du projet en version orientée objet
|
|
|
|
import random
|
|
import Levenshtein
|
|
|
|
def min_i(array: list[int]) -> int:
|
|
min_val = array[0]
|
|
min_i = 0
|
|
for i in range(len(array)):
|
|
if array[i] < min_val:
|
|
min_val = array[i]
|
|
min_i = i
|
|
return min_i
|
|
|
|
def max_i(array: list[int]) -> int:
|
|
max_val = array[0]
|
|
max_i = 0
|
|
for i in range(len(array)):
|
|
if array[i] > max_val:
|
|
max_val = array[i]
|
|
max_i = i
|
|
return max_i
|
|
|
|
class Population:
|
|
"""
|
|
Classe qui représente notre population d'individuts
|
|
"""
|
|
def __init__(self, pm, ng, n, ts, tm, alpha, fm):
|
|
self.individuals = [Individual() for _ in range(n)]
|
|
for individual in self.individuals:
|
|
individual.randomize(len(pm))
|
|
self.pm = pm
|
|
self.ng = ng
|
|
self.l = len(pm)
|
|
self.n = n
|
|
self.ts = ts
|
|
self.tm = tm
|
|
self.alpha = alpha
|
|
self.fitness_method = fm
|
|
|
|
def select(self) -> None:
|
|
"""
|
|
Methode qui sélectionne les meilleurs individus
|
|
"""
|
|
fitness_list = []
|
|
for individual in self.individuals:
|
|
match self.fitness_method:
|
|
case 1:
|
|
fitness_list.append(individual.fitness1(self.pm))
|
|
case 2:
|
|
fitness_list.append(individual.fitness2(self.pm, self.alpha))
|
|
case 3:
|
|
fitness_list.append(individual.fitness3(self.pm))
|
|
case _:
|
|
fitness_list.append(individual.fitness1(self.pm))
|
|
for i in range(int((1 - self.ts) * self.n)):
|
|
least = min_i(fitness_list)
|
|
fitness_list.pop(least)
|
|
self.individuals.pop(least)
|
|
|
|
def reproduct(self) -> None:
|
|
"""
|
|
Methode qui reproduit les individus entre eux jusqu'à obtenir une population de taille N
|
|
"""
|
|
new = []
|
|
while len(self.individuals) + len(new) != self.n:
|
|
cut = random.randint(int(self.l / 3), int(2 * self.l / 3))
|
|
indivi_1 = self.individuals[random.randint(0, len(self.individuals) - 1)]
|
|
indivi_2 = self.individuals[random.randint(0, len(self.individuals) - 1)]
|
|
while indivi_1 == indivi_2:
|
|
indivi_2 = self.individuals[random.randint(0, len(self.individuals) - 1)]
|
|
new_chromozome = indivi_1.getChromozome()[:cut] + indivi_2.getChromozome()[cut:]
|
|
child = Individual()
|
|
child.setChromozome(new_chromozome)
|
|
new.append(child)
|
|
self.individuals += new
|
|
|
|
def mutate(self) -> None:
|
|
"""
|
|
Methode qui mute une partie de la population selon le taut de mutation
|
|
"""
|
|
mutated = []
|
|
for i in range(int(self.tm * self.n)):
|
|
to_mutate = random.randint(0, self.n - 1)
|
|
while to_mutate in mutated:
|
|
to_mutate = random.randint(0, self.n - 1)
|
|
self.individuals[to_mutate].mutate()
|
|
mutated.append(to_mutate)
|
|
|
|
def print_best(self) -> None:
|
|
"""
|
|
Methode qui affiche le meilleur individu de la population
|
|
"""
|
|
fitness_list = []
|
|
for individual in self.individuals:
|
|
match self.fitness_method:
|
|
case 1:
|
|
fitness_list.append(individual.fitness1(self.pm))
|
|
case 2:
|
|
fitness_list.append(individual.fitness2(self.pm, self.alpha))
|
|
case 3:
|
|
fitness_list.append(individual.fitness3(self.pm))
|
|
case _:
|
|
fitness_list.append(individual.fitness1(self.pm))
|
|
print(self.individuals[max_i(fitness_list)].getChromozome())
|
|
|
|
def run(self) -> None:
|
|
"""
|
|
Boucle principale
|
|
"""
|
|
for i in range(self.ng):
|
|
self.select()
|
|
self.reproduct()
|
|
self.mutate()
|
|
self.print_best()
|
|
|
|
class Individual:
|
|
"""
|
|
Classe qui représente les individuts de la population (les solutions potentielles)
|
|
"""
|
|
def __init__(self):
|
|
self.chromozome = ""
|
|
|
|
def setChromozome(self, c: str) -> None:
|
|
self.chromozome = c
|
|
|
|
def getChromozome(self) -> str:
|
|
return self.chromozome
|
|
|
|
def randomize(self, l) -> None:
|
|
"""
|
|
Methode qui change la valeur d'un chromozome pour une valeur aléatoire
|
|
"""
|
|
new = ""
|
|
for i in range(l):
|
|
new += chr(random.randint(0, 255))
|
|
self.chromozome = new
|
|
|
|
def fitness1(self, pm) -> int:
|
|
"""
|
|
Première methode de fitness, fait la somme des différences entre les codages des caractères des deux chaînes.
|
|
"""
|
|
sum = 0
|
|
for i in range(len(self.chromozome)):
|
|
sum += abs(ord(self.chromozome[i]) - ord(pm[i]))
|
|
return -sum
|
|
|
|
def fitness2(self, pm, alpha) -> int:
|
|
"""
|
|
Deuxième methode de fitness qui compte les caractères bien placés et mal placés et qui renvoie un int pondéré par alpha
|
|
"""
|
|
match = 0
|
|
missed_placed = 0
|
|
for i in range(len(self.chromozome)):
|
|
if self.chromozome[i] == pm[i]:
|
|
match += 1
|
|
else:
|
|
missed_placed += 1
|
|
return match + alpha * missed_placed
|
|
|
|
def fitness3(self, pm) -> int:
|
|
"""
|
|
Troisième methode de fitness qui utilise la distance de Levenshtein
|
|
"""
|
|
return -Levenshtein.distance(self.chromozome, pm)
|
|
|
|
def mutate(self) -> None:
|
|
"""
|
|
Methode qui change un des caractères du chromozome
|
|
"""
|
|
new = list(self.chromozome)
|
|
new[random.randint(0, len(new) - 1)] = chr(random.randint(0, 255))
|
|
self.chromozome = "".join(new)
|